Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus.

Identifieur interne : 003230 ( Main/Exploration ); précédent : 003229; suivant : 003231

High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus.

Auteurs : Sofia Berlin [Suède] ; Ulf Lagercrantz ; Sara Von Arnold ; Torbjörn Ost ; Ann Christin Rönnberg-W Stljung

Source :

RBID : pubmed:20178595

Descripteurs français

English descriptors

Abstract

BACKGROUND

Salix (willow) and Populus (poplar) are members of the Salicaceae family and they share many ecological as well as genetic and genomic characteristics. The interest of using willow for biomass production is growing, which has resulted in increased pressure on breeding of high yielding and resistant clones adapted to different environments. The main purpose of this work was to develop dense genetic linkage maps for mapping of traits related to yield and resistance in willow. We used the Populus trichocarpa genome to extract evenly spaced markers and mapped the orthologous loci in the willow genome. The marker positions in the two genomes were used to study genome evolution since the divergence of the two lineages some 45 mya.

RESULTS

We constructed two linkage maps covering the 19 linkage groups in willow. The most detailed consensus map, S1, contains 495 markers with a total genetic distance of 2477 cM and an average distance of 5.0 cM between the markers. The S3 consensus map contains 221 markers and has a total genetic distance of 1793 cM and an average distance of 8.1 cM between the markers. We found high degree of synteny and gene order conservation between willow and poplar. There is however evidence for two major interchromosomal rearrangements involving poplar LG I and XVI and willow LG Ib, suggesting a fission or a fusion in one of the lineages, as well as five intrachromosomal inversions. The number of silent substitutions were three times lower (median: 0.12) between orthologs than between paralogs (median: 0.37 - 0.41).

CONCLUSIONS

The relatively slow rates of genomic change between willow and poplar mean that the genomic resources in poplar will be most useful in genomic research in willow, such as identifying genes underlying QTLs of important traits. Our data suggest that the whole-genome duplication occurred long before the divergence of the two genera, events which have until now been regarded as contemporary. Estimated silent substitution rates were 1.28 x 10-9 and 1.68 x 10-9 per site and year, which are close to rates found in other perennials but much lower than rates in annuals.


DOI: 10.1186/1471-2164-11-129
PubMed: 20178595
PubMed Central: PMC2834636


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus.</title>
<author>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7090, SE-750 07 Uppsala, Sweden. sofia.berlin@vbsg.slu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7090, SE-750 07 Uppsala</wicri:regionArea>
<wicri:noRegion>SE-750 07 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
</author>
<author>
<name sortKey="Von Arnold, Sara" sort="Von Arnold, Sara" uniqKey="Von Arnold S" first="Sara" last="Von Arnold">Sara Von Arnold</name>
</author>
<author>
<name sortKey="Ost, Torbjorn" sort="Ost, Torbjorn" uniqKey="Ost T" first="Torbjörn" last="Ost">Torbjörn Ost</name>
</author>
<author>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann Christin" last="Rönnberg-W Stljung">Ann Christin Rönnberg-W Stljung</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20178595</idno>
<idno type="pmid">20178595</idno>
<idno type="doi">10.1186/1471-2164-11-129</idno>
<idno type="pmc">PMC2834636</idno>
<idno type="wicri:Area/Main/Corpus">003293</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003293</idno>
<idno type="wicri:Area/Main/Curation">003293</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003293</idno>
<idno type="wicri:Area/Main/Exploration">003293</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus.</title>
<author>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7090, SE-750 07 Uppsala, Sweden. sofia.berlin@vbsg.slu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7090, SE-750 07 Uppsala</wicri:regionArea>
<wicri:noRegion>SE-750 07 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
</author>
<author>
<name sortKey="Von Arnold, Sara" sort="Von Arnold, Sara" uniqKey="Von Arnold S" first="Sara" last="Von Arnold">Sara Von Arnold</name>
</author>
<author>
<name sortKey="Ost, Torbjorn" sort="Ost, Torbjorn" uniqKey="Ost T" first="Torbjörn" last="Ost">Torbjörn Ost</name>
</author>
<author>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann Christin" last="Rönnberg-W Stljung">Ann Christin Rönnberg-W Stljung</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amplified Fragment Length Polymorphism Analysis (MeSH)</term>
<term>Chromosome Mapping (methods)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Order (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Introns (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
<term>Salix (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Synteny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Analyse de polymorphisme de longueur de fragments amplifiés (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Cartographie chromosomique (méthodes)</term>
<term>Génome végétal (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Introns (MeSH)</term>
<term>Ordre des gènes (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (génétique)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Salix (génétique)</term>
<term>Synténie (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromosome Mapping</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cartographie chromosomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amplified Fragment Length Polymorphism Analysis</term>
<term>Evolution, Molecular</term>
<term>Gene Order</term>
<term>Genome, Plant</term>
<term>Genotype</term>
<term>Introns</term>
<term>Microsatellite Repeats</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Sequence Analysis, DNA</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de polymorphisme de longueur de fragments amplifiés</term>
<term>Analyse de séquence d'ADN</term>
<term>Génome végétal</term>
<term>Génotype</term>
<term>Introns</term>
<term>Ordre des gènes</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Répétitions microsatellites</term>
<term>Synténie</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Salix (willow) and Populus (poplar) are members of the Salicaceae family and they share many ecological as well as genetic and genomic characteristics. The interest of using willow for biomass production is growing, which has resulted in increased pressure on breeding of high yielding and resistant clones adapted to different environments. The main purpose of this work was to develop dense genetic linkage maps for mapping of traits related to yield and resistance in willow. We used the Populus trichocarpa genome to extract evenly spaced markers and mapped the orthologous loci in the willow genome. The marker positions in the two genomes were used to study genome evolution since the divergence of the two lineages some 45 mya.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We constructed two linkage maps covering the 19 linkage groups in willow. The most detailed consensus map, S1, contains 495 markers with a total genetic distance of 2477 cM and an average distance of 5.0 cM between the markers. The S3 consensus map contains 221 markers and has a total genetic distance of 1793 cM and an average distance of 8.1 cM between the markers. We found high degree of synteny and gene order conservation between willow and poplar. There is however evidence for two major interchromosomal rearrangements involving poplar LG I and XVI and willow LG Ib, suggesting a fission or a fusion in one of the lineages, as well as five intrachromosomal inversions. The number of silent substitutions were three times lower (median: 0.12) between orthologs than between paralogs (median: 0.37 - 0.41).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The relatively slow rates of genomic change between willow and poplar mean that the genomic resources in poplar will be most useful in genomic research in willow, such as identifying genes underlying QTLs of important traits. Our data suggest that the whole-genome duplication occurred long before the divergence of the two genera, events which have until now been regarded as contemporary. Estimated silent substitution rates were 1.28 x 10-9 and 1.68 x 10-9 per site and year, which are close to rates found in other perennials but much lower than rates in annuals.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20178595</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>129</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-11-129</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Salix (willow) and Populus (poplar) are members of the Salicaceae family and they share many ecological as well as genetic and genomic characteristics. The interest of using willow for biomass production is growing, which has resulted in increased pressure on breeding of high yielding and resistant clones adapted to different environments. The main purpose of this work was to develop dense genetic linkage maps for mapping of traits related to yield and resistance in willow. We used the Populus trichocarpa genome to extract evenly spaced markers and mapped the orthologous loci in the willow genome. The marker positions in the two genomes were used to study genome evolution since the divergence of the two lineages some 45 mya.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We constructed two linkage maps covering the 19 linkage groups in willow. The most detailed consensus map, S1, contains 495 markers with a total genetic distance of 2477 cM and an average distance of 5.0 cM between the markers. The S3 consensus map contains 221 markers and has a total genetic distance of 1793 cM and an average distance of 8.1 cM between the markers. We found high degree of synteny and gene order conservation between willow and poplar. There is however evidence for two major interchromosomal rearrangements involving poplar LG I and XVI and willow LG Ib, suggesting a fission or a fusion in one of the lineages, as well as five intrachromosomal inversions. The number of silent substitutions were three times lower (median: 0.12) between orthologs than between paralogs (median: 0.37 - 0.41).</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The relatively slow rates of genomic change between willow and poplar mean that the genomic resources in poplar will be most useful in genomic research in willow, such as identifying genes underlying QTLs of important traits. Our data suggest that the whole-genome duplication occurred long before the divergence of the two genera, events which have until now been regarded as contemporary. Estimated silent substitution rates were 1.28 x 10-9 and 1.68 x 10-9 per site and year, which are close to rates found in other perennials but much lower than rates in annuals.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Berlin</LastName>
<ForeName>Sofia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7090, SE-750 07 Uppsala, Sweden. sofia.berlin@vbsg.slu.se</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lagercrantz</LastName>
<ForeName>Ulf</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>von Arnold</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ost</LastName>
<ForeName>Torbjörn</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rönnberg-Wästljung</LastName>
<ForeName>Ann Christin</ForeName>
<Initials>AC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054458" MajorTopicYN="N">Amplified Fragment Length Polymorphism Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023061" MajorTopicYN="N">Gene Order</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
<ArticleId IdType="pii">1471-2164-11-129</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-11-129</ArticleId>
<ArticleId IdType="pmc">PMC2834636</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2001 Jun;158(2):787-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Feb;110(3):537-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2003;68:69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15338605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 May;108(7):1335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2009 May;25(5):210-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19368988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1994 Oct;89(2-3):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24177824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hereditas. 2003;138(3):172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14641480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2000 Apr;43(2):293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10791817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(3):467-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Sep;90(9):1389-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2003 Feb;90(2):169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Oct;104(5):789-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18230180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19134208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2008 Jan;100(1):59-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17895905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Jul;179(3):1657-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Apr;10(2):176-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17291821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Jan;24(1):90-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16997907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Oct 3;322(5898):86-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Aug;105(2-3):277-288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Dec;21(12):673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Apr;66(6):619-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18247136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Aug;109(3):451-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15168022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2001 Nov 7;268(1482):2211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11674868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Nov;105(6-7):1087-1096</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2002 Jun;45(3):541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):15-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Nov;22(11):2304-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2002 Jan-Feb;93(1):77-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Nov;150(3):1217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9799273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Mar;24(3):860-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Nov;168(3):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5737-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lagercrantz, Ulf" sort="Lagercrantz, Ulf" uniqKey="Lagercrantz U" first="Ulf" last="Lagercrantz">Ulf Lagercrantz</name>
<name sortKey="Ost, Torbjorn" sort="Ost, Torbjorn" uniqKey="Ost T" first="Torbjörn" last="Ost">Torbjörn Ost</name>
<name sortKey="Ronnberg W Stljung, Ann Christin" sort="Ronnberg W Stljung, Ann Christin" uniqKey="Ronnberg W Stljung A" first="Ann Christin" last="Rönnberg-W Stljung">Ann Christin Rönnberg-W Stljung</name>
<name sortKey="Von Arnold, Sara" sort="Von Arnold, Sara" uniqKey="Von Arnold S" first="Sara" last="Von Arnold">Sara Von Arnold</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Berlin, Sofia" sort="Berlin, Sofia" uniqKey="Berlin S" first="Sofia" last="Berlin">Sofia Berlin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003230 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003230 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20178595
   |texte=   High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20178595" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020